II B.Tech - I Semester - Regular / Supplementary Examinations DECEMBER 2023

DISCRETE MATHEMATICAL STRUCTURES

(Common for CSE, IT)
Duration: 3 hours
Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

BL - Blooms Level
CO - Course Outcome

			BL	CO	Max. Marks
UNIT-I					
1	a)	Show that $[(\boldsymbol{A} \rightarrow \boldsymbol{B}) \wedge \boldsymbol{A}] \rightarrow \boldsymbol{B}$ is a tautology.	L2	CO1	7 M
	b)	Construct Principal of Conjunctive Normal Forms(PCNF) and Principal of Disjunctive Normal Forms (PDNF) of the formula. $(\neg A \quad \vee \neg B) \rightarrow(A \leftrightarrow \neg B)$	L3	CO 2	7 M
OR					
2	a)	Express the converse, inverse, contra positive of 'If you work hard then you will be rewarded'.	L2	CO1	7 M
	b)	What is Principle Conjunctive Normal Form(PCNF)? Construct the PCNF of $(\neg A \rightarrow B) \wedge(C \leftrightarrow A)$	L3	CO 2	7 M

UNIT-II

3	a)	Show that the premises "One student in this class knows how to write program in JAVA", and "Everyone who knows how to write the programme in JAVA can get a high paying job imply a conclusion "someone in this class can get a high paying job".	L3	CO 2	7 M
	b)	Let $Q(x)$ be the sentence that " $x=x+1$ ", What is the truth value of the quantification $\exists x Q(x)$ where the universe of discourse is the set of real number?	L3	CO 2	7 M
OR					
4	a)	Let $L(x, y)$ be the predicate " x likes y " and let the universe of discourse be the set of all people. Use quantifiers to express each of the following statements. (i) Everyone likes everyone. (ii) Everyone likes someone. (iii) Someone does not like anyone.	L3	CO 2	7 M
	b)	Using rules of inference, show that ' s ' is a valid inference from the premises $p \rightarrow \neg q, q \vee r, \neg s \rightarrow p \text { and } \neg r$	L3	CO 2	7 M
UNIT-III					
5	a)	Solve the recurrence relation $a_{n}=a_{n-1}+2 a_{n-2}$ with $a_{0}=2$ and $a_{1}=7$.	L3	CO3	7 M
	b)	Solve the recurrence relation $a_{n}=2 a_{n-1}+3 * 2^{n}$	L3	CO3	7 M

OR					
6	a)	Solve the recurrence relation $a_{n}=7 a_{n-1}-10 a_{n-2} \text { with } a_{0}=3 \text { and } a_{l}=5 .$	L3	CO3	7 M
	b)	Solve the recurrence relation $a_{n}=a_{n-1}+3^{n}$	L3	CO3	7 M
UNIT-IV					
7	a)	Suppose that the relation \boldsymbol{R} on a set is represented by the matrix. $\left[\begin{array}{lll} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{array}\right]$ Is \boldsymbol{R} reflexive, symmetric and/or antisymmetric? Justify your answer.	L4	CO4	7 M
	b)	Determine whether $(\boldsymbol{P}(\boldsymbol{S}), \subseteq)$ is a lattice where \boldsymbol{S} is a set $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$ and $\boldsymbol{P}(\boldsymbol{S})$ is the power set of S.	L2	CO4	7 M
OR					
8	a)	Determine whether the relation \boldsymbol{R} on the set of all people is reflexive, symmetric, antisymmetric and/or transitive where $(\boldsymbol{a}, \boldsymbol{b}) \boldsymbol{\epsilon} \boldsymbol{R}$ if and only if \boldsymbol{a} is teller than \boldsymbol{b}.	L2	CO4	7 M
	b)	Examine whether the Posets (\{1, 2, 3,4,5\}, \|) and ($\{1,2,4,8,16\}, \mid$) are lattices.	L4	CO4	7 M
UNIT-V					
9	a)	Give an example of a graph that has neither an Eulerian circuit nor a Hamiltonian circuit.	L2	CO4	7 M

	b)	Discover a Minimal Spanning Tree for the given weighted graph using Kruskal's Algorithm.	L4	CO 4	7 M
OR					
10	a)	Explain graph coloring and chromatic number with an example.	L2	CO 4	7 M
	b)	Consider the following graph Assume ' \boldsymbol{A} ' is the start node and Compute Depth First Search traversal order of the above graph.	L4	CO 4	7 M

